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Chapter 3. Conservation of Linear Momentum 
 

Notes: 
• Most of the material in this chapter is taken from Young and Freedman, Chap. 8. 

3.1 The Impulse 
We have already defined the momentum vector p  of a body in Chapter 1 in relation to 
the net force Fnet  acting on it with 
 

 Fnet =
dp
dt
,  (3.1) 

 
where 
 
 p = mv.  (3.2) 
 
That is, the force is the time derivative of the momentum. Conversely, it also follows that 
we can express the momentum as the anti-derivative of the force 
 
 p = Fnet dt∫ .  (3.3) 
 
Let us simplify things and consider the case of a constant force is that acts on the body 
for the period of time Δt = t2 − t1 . In this case we consider the change in momentum 
Δp = p2 − p1  that takes place under the action of the force in the interval Δt . Equation 
(3.3) then yields 
 

 

Δp = Fnet dtt1

t2∫
= Fnet dt

t1

t2∫
= Fnet t2 − t1( ),

 (3.4) 

 
or 
 
 Δp = FnetΔt.  (3.5) 
   
The impulse J  is defined as this change in momentum. That is 
 
 J ≡ p2 − p1.  (3.6) 
 
Equation (3.6) is a mathematical statement of the so-called impulse-momentum 
theorem, which is expressed as follows 
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The change in momentum of a body during a time interval equals the impulse of the net 
force that acts on the particle during that interval. 
 
Although we focused on the case where a constant force is at play, the same result applies 
in the more general situation when the force can vary in magnitude and orientation. In 
that case we write 
 

 

J = Fnet dtt1

t2∫
= dp

dt
dt

t1

t2∫
= dp

t1

t2∫
= p2 − p1.

 (3.7) 

 
Even when the force is variable it is possible, however, to define an average force such 
that (following equations (3.5) and (3.7)) 
 
 J = Fave t2 − t1( ).  (3.8) 
 
It is interesting to note the similarity between in the respective forms of the work W  
done by a net force Fnet  over a displacement Δr  and the impulse J  resulting from that 
same force over a time interval Δt . That is, 
 

 

W = Fnet ⋅dr1

2

∫
= K2 − K1

J = Fnet dt1

2

∫
= p2 − p1.

 (3.9) 

  
Just as we had that the final kinetic energy of the object equals the sum of the initial 
kinetic energy and the work done by the net force on the object 
 
 K2 = K1 +W ,  (3.10) 
 
the final momentum equals the sum of the initial momentum and the impulse 
 
 p2 = p1 + J.  (3.11) 

3.1.1 Exercises 
1. (Prob. 8.7 in Young and Freedman.) A 0.0450 kg golf ball initially at rest is given a 
speed of 25.0 m/s when a club strikes it. If the club and ball are in contact for 2.00 ms, 
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what average force acts on the ball? Is the effect of the ball’s weight during the time of 
contact significant? Why or why not? 
  
Solution. 
 
If the direction of the final velocity of the ball is along the positive x-axis , then vx1 = 0  
and vx2 = 25 m/s . From equation (3.8) we have 
 

 

Fave =
mvx2 −mvx1

t2 − t1

= 0.0450 kg ⋅25 m/s
2.00 ×10−3  s

= 562 N.

 (3.12) 

 
On the other hand, the weight of the ball is w = mg = 0.0450 kg ⋅9.80 m/s2 = 0.441 N . 
The force on the ball therefore exceeds the weight of the ball by a factor of more than 
1000; the weight of the ball is utterly insignificant. 
 
2. (Prob. 8.12 in Young and Freedman.) A bat strikes a 0.145 kg baseball. Just before 
impact, the ball is travelling horizontally to the right at 50.0 m/s, and it leaves the bat 
travelling to the left at an angle of  30  above horizontal with a speed of 65.0 m/s. If the 
ball and bat are in contact for 1.75 ms, find the horizontal and vertical components of the 
average force on the ball. 
 
Solution. 
 
Let x > 0  and y > 0  be oriented to the right and upward. The impulse components along 
these directions are 
 

 

 

Jx = m vx2 − vx1( )
= 0.145 kg ⋅ −65cos 30( )− 50⎡⎣ ⎤⎦  m/s

= −15.4 N ⋅s

Jy = m vy2 − vy1( )
= 0.145 kg ⋅ 65sin 30( )− 0⎡⎣ ⎤⎦  m/s

= 4.71 N ⋅s.

 (3.13) 

 
The corresponding components of the average force are 
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Fave,x =
Jx
Δt

= −15.4 N ⋅s
1.75 ×10−3  s

= −8800 N

 (3.14) 

 
and 
 

 

Fave,y =
Jy
Δt

= 4.71 N ⋅s
1.75 ×10−3  s

= 2690 N.

 (3.15) 

3.2 Conservation of Linear Momentum 
Given that considerations of equation (3.10) led us to the principle of conservation of 
energy in Chapter 2, and that equation (3.11) for the momentum and impulse has a form 
that is basically similar to that of equation (3.10), it is then reasonable to expect that we 
would also have conservation of the linear momentum (for an isolated system). 
 
To show this we consider an isolated system for which all the forces involved in the 
dynamics of the set of particles contained in the system are internal to it. That is, internal 
forces denote interactions between particles (according to Newton’s Third Law), as 
opposed to external forces, which act on the system as a whole. For example, let us 
assume that an isolated system is made of only two particles, which we denote as “1” and 
“2”. According to Newton’s Third Law if F12  is the net internal force that particle “1” 
applies on particle “2”, then F21 = −F12  and 
 
 F12 + F21 = 0.  (3.16) 
 
If we now use Newton’s Second Law as expressed in equation (3.1), then we can write 
 

 

F12 + F21 =
dp2
dt

+ dp1
dt

= d
dt
p2 + p1( )

= 0.

 (3.17) 

 
But since the total linear momentum p tot  of the system is 
 
 p tot = p1 + p2,  (3.18) 
 
it follows that  
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 dp tot
dt

= 0  (3.19) 

 
or 
 
 p tot = constant.  (3.20) 
 
Although we only considered two particles, this result is applicable to any number of 
particles, and we are lead to the principle of conservation of linear momentum 
 
If no net external force is acting on a system (i.e., an isolated system), then the total 
linear momentum of the system is constant. 
 
For an isolated system containing N  we would have 
 

 p tot = pi
i=1

N

∑
= constant.

 (3.21) 

 
It should be noted that this result relies entirely on Newton’s Third Law, as stated in 
equation (3.16). Because this equation does not make any requirement on the nature of 
the internal forces involved (i.e., they do not need to be “central”, or being directed at the 
centers of the particles), it is often called the “weak form” of Newton’s Third Law. We 
will use another stronger version of this law to derive the principle of conservation of 
angular momentum in the next chapter.   

3.2.1 Exercises 
3. (Prob. 8.18 in Young and Freedman.) A 68.5-kg astronaut is doing a repair in space on 
the orbiting space station. She throws a 2.25-kg tool away from her at 3.20 m/s relative to 
the space station. With what speed and in what direction will she begin to move? 
 
Solution. 
 
Let us assume that the tool is thrown in the positive x  direction and that its velocity is 
denoted by vBx ; the astronaut’s velocity is vAx . Defining by “1” and “2” the initial and 
final conditions of the astronaut-tool system we have vAx1 = vBx1 = 0  and by the principle 
of conservation of the linear momentum we write 
 

 mAvAx1 +mBvBx1 = mAvAx2 +mBvBx2
= 0.

 (3.22) 

 
It therefore follows that 
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vAx2 = − mB

mA

vBx2

= − 2.25 kg
68.5 kg

3.20 m/s

= −0.105 m/s

 (3.23) 

 
and the astronaut starts moving opposite to the direction in which she throws the tool. 
 
4. (Prob. 8.23 in Young and Freedman.) Two identical 1.50-kg masses are pressed against 
opposite ends of a light spring of force constant 1.75 N/cm, compressing it by 20.0 cm 
from its normal length. Find the speed of each mass when it has moved free of the spring 
on a frictionless horizontal table. 
 
Solution. 
 
The initial and final conditions of the system are shown in Figure 1. Since the linear 
momentum is conserved and vA1 = vB1 = 0 , it is clear that 
 

 mAvA1 +mBvB1 = mAvA2 +mBvB2
= 0

 (3.24) 

 
and vA2 = −vB2  (because mA = mB ). But the system is also conservative since no energy is 
dissipated. We can therefore write 
 

 1
2
mvA1

2 + 1
2
mvB1

2 + 1
2
kx1

2 = 1
2
mvA2

2 + 1
2
mvB2

2 + 1
2
kx2

2  (3.25) 

 
or, since x2 = 0 , 
 

 
1
2
kx1

2 = 1
2
mvA2

2 + 1
2
mvB2

2

= mvA2
2 .

 (3.26) 

  
We then find that  
 

 

vA2 = x1
k

2m

= 0.200 m 175 N/m
2 ⋅1.50 kg

= 1.53 m/s.

 (3.27) 
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3.3 Collisions 
Collisions can be thought of as special cases where internal forces are responsible for the 
strong interactions occurring between the bodies composing the system. There are two 
different, broad classes of collisions: elastic and inelastic collisions. The distinction 
between these two classes resides with the fact that conservation of kinetic energy is 
achieved in an elastic collision whereas it is not in an inelastic collision. In other words, 
the internal forces are conservative in the first case, but are not in the other.  
 
It is also essential to remember that experiments show that linear momentum is always 
conserved in a collision, irrespective of whether kinetic energy is conserved or not. 

3.3.1 Elastic Collisions 
If we consider a collision between two bodies of masses and velocities mA  and vA , and 
mB  and vB , respectively, then we have for an elastic collision 
 

 
1
2
mAvA1

2 + 1
2
mBvB1

2 = 1
2
mAvA2

2 + 1
2
mBvB2

2

mAvA1 +mBvB1 = mAvA2 +mBvB2,
 (3.28) 

 
where the subscripts “1” and “2” denote the physical conditions before and after the 
collision. We will now make use the fact that we expect that the laws of physics are the 
same in any inertial reference frame (see the discussion in Section 1.1.2 in Chapter 1). 
We therefore choose a new reference frame that is moving with the initial velocity vB1  of 
the second object. That is, in that frame the velocity become 
 

 

wA1 = vA1 − vB1
wB1 = vB1 − vB1 = 0
wA2 = vA2 − vB1
wB2 = vB2 − vB1.

 (3.29) 

 
That is, the second body is initially at rest in this inertial frame. The equations for the 
conservations of kinetic energy and linear momentum in that inertial frame are  
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 8.23. IDENTIFY:   The momentum and the mechanical energy of the system are both conserved. The mechanical 
energy consists of the kinetic energy of the masses and the elastic potential energy of the spring. The 
potential energy stored in the spring is transformed into the kinetic energy of the two masses. 
SET UP:   Let the system be the two masses and the spring. The system is sketched in Figure 8.23, in its 
initial and final situations. Use coordinates where x+  is to the right. Call the masses A and B. 

 

 
Figure 8.23 

 

EXECUTE:   1 2x xP P=  so 0 (1 50 kg)( ) (1 50 kg)( )A Bv v= . − + .  and, since the masses are equal, .A Bv v=  
Energy conservation says the potential energy originally stored in the spring is all converted into kinetic 
energy of the masses, so 2 2 21 1 1

12 2 2 .A Bkx mv mv= +  Since ,A Bv v=  this equation gives 

1
175 N/m(0 200 m) 1 53 m/s.

2 2(1 50 kg)A
kv x
m

= = .  = .
.

 

EVALUATE:   If the objects have different masses they will end up with different speeds. The lighter one 
will have the greater speed, since they end up with equal magnitudes of momentum. 

 8.24. IDENTIFY:   In part (a) no horizontal force implies xP  is constant. In part (b) use the energy expression, 
Eq. 7.14, to find the potential energy initially in the spring. 
SET UP:   Initially both blocks are at rest. 

 

 

Figure 8.24 
 

EXECUTE:   (a) 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = +  

2 20 A A x B B xm v m v= +  

2 2
3 00 kg ( 1 20 m/s) 3 60 m/s
1 00 kg

B
A x B x

A

mv v
m

§ · § ·.= − = − + . = − .¨ ¸ ¨ ¸.© ¹© ¹
 

Block A has a final speed of 3.60 m/s, and moves off in the opposite direction to B. 
(b) Use energy conservation: 1 1 other 2 2.K U W K U+ + = +  
Only the spring force does work so other el0 and .W U U= =  

1 0K =  (the blocks initially are at rest) 

2 0U =  (no potential energy is left in the spring) 
2 2 2 21 1 1 1

2 2 22 2 2 2(1 00 kg)(3 60 m/s) (3 00 kg)(1 20 m/s) 8 64 JA A B BK m v m v= + = . . + . . = .  

1 1,elU U=  the potential energy stored in the compressed spring. 

Thus 1,el 2 8 64 JU K= = .  

Figure 1 – The initial and final conditions for the 
system of Problem 4. 
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1
2
mAwA1

2 = 1
2
mAwA2

2 + 1
2
mBwB2

2

mAwA1 = mAwA2 +mBwB2,
 (3.30) 

 
which can be transformed to 
 

 
mBwB2

2 = mA wA1
2 −wA2

2( )
mBwB2 = mA wA1 −wA2( ).

 (3.31) 

 
The first of equations (3.31) can further be rewritten as  
 
 mBwB2 ⋅wB2 = mA wA1 −wA2( ) ⋅ wA1 +wA2( ),  (3.32) 
 
and upon insertion of the second of equations (3.31) on the left-hand side of equation 
(3.32) becomes 
 
 			mA

w
A1 −wA2( )⋅wB2 =mA

w
A1 −wA2( )⋅ wA1 +wA2( ).  (3.33) 

 
It therefore follows that  
 
 		wB2cos θB( ) = w

A1 +wA2( )cos θA( ) ,  (3.34) 
 
where 	θA

 and 	θB  are, respectively, the angles made by 			 wA1 +wA2( )  and 			wB2  relative to 

			 wA1 −wA2( ) . This equation constrains one component of the velocities and we 
accordingly simplify the problem by restricting ourselves to one-dimensional collisions, 
where all the velocities (before and after the collision) are aligned along the same axis. 
For such a case 		θA

=θ
B
=0 , and it follows from equations (3.32) and (3.34) that   

 
 		mB

w
A1 +wA2( ) =mA

w
A1 −wA2( )  (3.35) 

 
or, expressing the final velocity for the first body as a function of its initial velocity 
 

 
		
w

A2 =
m

A
−m

B

m
A
+m

B

w
A1.  (3.36) 

 
The final velocity of the second body can also be determined by inserting equation (3.36) 
into equation (3.34) with 
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w
B2 =

2m
A

m
A
+m

B

w
A1.  (3.37) 

 
It is interesting to study some limiting cases of collisions. For example, when  mA  mB  
we find that 
 

 
		 

w
A2 ! −wA1

w
B2 !0.

 (3.38) 

That is, the light, first body bounces off the heavy second body and reverses it velocity; 
the heavy body remains stationary. On the other hand, if we have  mA  mB , then 
 

 
		 

w
A2 !wA1

w
B2 !2wA1.

 (3.39) 

 
The heavy, first body keeps going unimpeded by the light second body, which starts 
moving at twice the initial velocity of the heavy body. A few moments of thoughts should 
convince you that these two examples are consistent with one another. 
 
Another interesting case happens when mA = mB . We then find that 
 

 
		

w
A2 =0

w
B2 =wA1.

 (3.40) 

 
That is, the particles exchange their velocities.   
 
We now come back to equation (3.34) and rewrite it as  
 
 		wA1 =wB2 −wA2 ,  (3.41) 
 
and we now return to our original inertial frame. That is, transform back the velocities 
with equations (3.29) to get the important result 
 
 		vA1 − vB1 = − v

A2 − vB2( ).  (3.42) 
 
Equation (3.42) (or equation (3.41), for that matter) establishes the fact in an elastic 
collision the relative velocity between the two bodies has the same magnitude (but is 
reversed) before and after the collision. One can readily verify that the three cases we 
just studies (i.e., equations (3.38), (3.39), and (3.40)) all agree with equation (3.42).  

3.3.2 Completely Inelastic Collisions 
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We already mentioned that inelastic collisions do not conserve kinetic energy. A special 
case can be studied when the two bodies join and stick together after the collision; these 
are called completely inelastic collisions. We now have, using again our inertial frame 
where the second body is initially at rest, 
 
 
 wA2 = wB2 ≡ w2.  (3.43) 
 
And the principle of conservation of linear momentum allows us to write   
 
 mAwA1 = mA +mB( )w2,  (3.44) 
 
or 
 

 w2 =
mA

mA +mB

wA1.  (3.45) 

 
We can now verify that kinetic energy is lost because of the collision by calculating the 
kinetic energies before and after the interaction 
 

 

K1 =
1
2
mAwA1

2

K2 =
1
2
mA +mB( )w22

= 1
2

mA
2

mA +mB

wA1
2 .

 (3.46) 

 
The loss of kinetic energy is made evident by the ratio 
 

 K2

K1
= mA

mA +mB

<1,  (3.47) 

 
which, as shown here, is always less than unity. 

3.3.3 Exercises 
5. (Prob. 8.49 in Young and Freedman.) Canadian nuclear reactors use heavy water 
moderators in which elastic collisions occur between the neutrons and deuterons of mass 
2.0 u (‘u’ is an atomic mass unit). (a) What is the speed of a neutron, expressed as a 
fraction of its original speed, after a head-on, elastic collision with a deuteron that is 
initially at rest? (b) What is its kinetic energy, expressed a fraction of its original kinetic 
energy? (c) How many such successive collisions will reduce the speed of a neutron to 
1/59,000 of its original value? 
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Solution. 
 
Let the positive x  direction be that of the initial momentum of the neutron. The mass of a 
neutron is mn = 1.0 u  and that of a deuteron md = 2.0 u . 
 
(a) We denote by “1” and “2” the conditions before and after the collision, respectively. 
We then have from the principles of conservation of energy and linear momentum 
 

 
1
2
mnvnx,1

2 = 1
2
mnvnx,2

2 + 1
2
mdvdx,2

2

mnvnx,1 = mnvnx,2 +mdvdx,2 .
 (3.48) 

  
Solving these equations was accomplished before in three dimensions and shown to yield 
equation (3.36), from which we use only the x-component  
 

 

vnx,2 =
mn −md

mn +md

vnx,1

= 1.0 u − 2.0 u
1.0 u + 2.0 u

vnx,1

= −
vnx,1

3
.

 (3.49) 

 
(b) The neutron kinetic energy after the collision is 
 

 

Kn,2 =
1
2
mnvnx,2

2

= 1
2
mn

vnx,1
3

⎛
⎝⎜

⎞
⎠⎟
2

=
Kn,1

9
.

 (3.50) 

 
(c) For each collision the speed of the neutron is reduced by a factor of three. So for n  
collisions we have 
 

 

vnx, n+1( )

vnx,1
= 1
3

⎛
⎝⎜

⎞
⎠⎟
n

= 1
59,000

.
 (3.51) 

 
This implies that  
 
 3n = 59,000,  (3.52) 
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or 
 

 
ln 3n( ) = n ln 3( )

= ln 59,000( )
 (3.53) 

 
and 
 

 
n = ln 59,000( )

ln 3( )
= 10.0.

 (3.54) 

3.4 Centre of Mass Motion 
Given a system of, say, N  particles of potentially different masses, it would be 
interesting and perhaps useful to define some mean position for the ensemble using the 
position of each particle. Since more massive particles will carry more momentum for a 
given velocity it makes sense to weight the position of a particle with its mass. That is, 
we define the location of the centre of mass of the system with 
 

 rcm =
miri

i=1

N

∑

mi
i=1

N

∑
,  (3.55) 

 
where mi  and ri  are the mass and position of particle i , respectively. Alternatively, we 
can write  
 

 rcm = 1
M

miri
i=1

N

∑ ,  (3.56) 

 
with the total mass of the system M = mii=1

N∑ . We can readily verify that when all the 
particles have the same mass m = mi , for all i , the centre of mass is simply the average 
of the particles’ positions 
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rcm =
mri

i=1

N

∑

m
i=1

N

∑

= m
Nm

ri
i=1

N

∑

= 1
N

ri
i=1

N

∑ ,

 (3.57) 

 
as would be expected. For solid or rigid bodies, which are composed of a continuum of 
microscopic particles (i.e., molecules), the summation of equation (3.56) is replaced by a 
three-dimensional integral1 
 

 rcm = 1
M

ρrd 3r∫ ,  (3.58) 

 
with ρ  mass density in kg/m3  and the total mass 
 
 M = ρ d 3r∫ .  (3.59) 
 
It is straightforward to determine the velocity of the centre of mass with 
 

 

vcm ≡ drcm
dt

= 1
M

d miri( )
dti=1

N

∑

= 1
M

mi
dri
dti=1

N

∑

= 1
M

miv i
i=1

N

∑ ,

 (3.60) 

   
or again 
 

 Mvcm = miv i
i=1

N

∑ .  (3.61) 

 
But if we consider the total linear momentum of the system of particles P  with 
 
                                                
1 The definition of a solid body as a continuum of particles, as well as equations (3.58) 
and (3.59), are advanced concepts on which you will not be tested. 
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 P = pi
i=1

N

∑ ,  (3.62) 

 
then we can also conveniently write 
 
 P = Mvcm.  (3.63) 
 
That is, the total momentum of the system of particles equals the total mass times the 
velocity of the centre of mass. The obvious thing to do now is to proceed with the next 
time derivative using equation (3.60) as a starting point 
 

 

acm ≡ dvcm
dt

= 1
M

mi
dv i
dti=1

N

∑

= 1
M

miai
i=1

N

∑ ,

 (3.64) 

 
or in the same manner as before 
 

 Macm = miai
i=1

N

∑ .  (3.65) 

 
But we clearly could have proceed differently and defined the force acting on the centre 
of mass from Newton’s Second Law and equation (3.63) 
 

 

Fcm = dP
dt

=
d Mvcm( )

dt

= M dvcm
dt

= Macm,

 (3.66) 

 
which is the same as on the left-hand side of equation (3.65). On the other hand, we have 
from equation (3.62) 
 

 
Fcm = dpi

dti=1

N

∑

= Fi
i=1

N

∑ .
 (3.67) 
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However, Fi  is the total force acting on particle i  that consists of the internal force Fint,i  
and the external force Fext,i  acting on it. We can therefore write 
 

 Fcm = Fext,i + Fint,i( )
i=1

N

∑ .  (3.68) 

 
But since we know from Newton’s Third Law that internal forces come in pairs that 
cancel each other (see equation (3.16)), it follows that the summation over all particles in 
equation (3.68) will yield 
 

 Fint,i
i=1

N

∑ = 0.  (3.69) 

 
We therefore find that  
 

 Fcm = Fext,i
i=1

N

∑ .  (3.70) 

 
That is, a system of particles acted upon by external forces behaves as though all the 
mass were concentrated at the centre of mass, while the net force acting on the total mass 
is the sum of the external forces acting on the particles composing the system.   

3.4.1 Exercises 

6. (Prob. 8.110 in Young and Freedman.) A 12-kg shell is launched at an angle of  55.0  
above the horizontal with an initial speed of 150 m/s. When it is at its highest point, the 
shell explodes into two fragments, one three times heavier than the other. The two 
fragments reach the ground at the same time. Assume the air resistance can be ignored. If 
the heavier fragment lands back at the same point from which the shell was launched, 
where will the lighter fragment land, and how much energy was released in the 
explosion? 
 
Solution. 
 
At its highest point, the shell will be moving horizontally; its momentum is then 
 
 p = mshellv0 cos θ( ),  (3.71) 
   
since there is no net force acting horizontally ( θ = 55 ). This momentum will be 
conserved once the shell explodes and 
 
 p = m1v1 +m2v2,  (3.72) 
 



 -60- 

where the subscript “1” is for the heavier fragment; it follows that m1 = 3m2 , and 
therefore m1 = 9 kg  and m2 = 3 kg . If the heavier fragment lands back to the launching 
point, then 
 
 v1 = −v0 cos θ( ),  (3.73) 
 
and 
 

 

p = mshellv0 cos θ( )
= m1 +m2( )v0 cos θ( )
= −m1v0 cos θ( ) +m2v2.

 (3.74) 

  
We now have an expression for the speed of the lighter fragment 
 

 
v2 =

2m1 +m2

m2

v0 cos θ( )

= 7v0 cos θ( ).
 (3.75) 

 
The initial vertical speed of the shell is given by 
 
 v0y = v0 sin θ( ),  (3.76) 
 
and since its vertical speed at its highest point is zero we can determine the time elapsed 
between the launch and the apex with 
 
 0 = v0y − gt,  (3.77) 
 
or 
 

 t = v0
g
sin θ( ). (3.78) 

 
But this will also be the time it will take for the heavier fragment return to the launch 
point; the horizontal distance it thus travels in the backward direction is 
 

 

x1 = v1t

= − v0
2

g
sin θ( )cos θ( )

= − v0
2

2g
sin 2θ( ).

 (3.79) 
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Obviously the distance covered by the lighter fragment will be the sum of the horizontal 
distance travelled by the shell before it exploded and that it travels after the explosion at 
speed v2 . That is, 
 

 

 

x2 = x1 + v2t

= 1+ 7( ) v0
2

2g
sin 2θ( )

=
4 ⋅ 150 m/s( )2

9.80 m/s2 sin 110( )
= 8630 m.

 (3.80) 

 
Finally, the energy released by the explosion is the energy that is not contained in the 
kinetic or potential energies of the fragments right after the explosion 
 

 

ΔK = 1
2
m1v1

2 + 1
2
m2v2

2 − 1
2
mshellv0

2 cos2 θ( )
= 24m2v0

2 cos2 θ( )
= 5.33×105  J.

 (3.81) 

 


